Fuzzy Databases Using Extended Fuzzy C-Means Clustering
نویسندگان
چکیده
In recent years, the Fuzzy Relational Database and its queries have gradually become a new research topic. Fuzzy Structured Query Language (FSQL) is used to retrieve the data from fuzzy database because traditional Structured Query Language (SQL) is inefficient to handling uncertain and vague queries. The proposed model provides the facility for naïve users for retrieving relevant results of non-crisp queries and improves the relevance of results provided by Fuzzy C-Means (FCM) through the use of extended Fuzzy C-Means (EFCM). An extended fuzzy clustering algorithm based on the Gustafson-Kessel (GK) algorithm. Fuzzy C-Means and Gustafson-Kessel algorithm both are well known fuzzy clustering algorithms. Gustafson-Kessel algorithm is needed because the clustering results of the traditional Fuzzy C-Means clustering algorithm are less stable and all the clusters are spherical shaped only. GustafsonKessel algorithm is useful for making clusters of different geometrical shapes. The result analysis of both the algorithms is on the basis of cluster validity measures which indicate that Gustafson-Kessel algorithm is better than Fuzzy C-Means fuzzy clustering algorithm.
منابع مشابه
Bilateral Weighted Fuzzy C-Means Clustering
Nowadays, the Fuzzy C-Means method has become one of the most popular clustering methods based on minimization of a criterion function. However, the performance of this clustering algorithm may be significantly degraded in the presence of noise. This paper presents a robust clustering algorithm called Bilateral Weighted Fuzzy CMeans (BWFCM). We used a new objective function that uses some k...
متن کاملA Fuzzy C-means Algorithm for Clustering Fuzzy Data and Its Application in Clustering Incomplete Data
The fuzzy c-means clustering algorithm is a useful tool for clustering; but it is convenient only for crisp complete data. In this article, an enhancement of the algorithm is proposed which is suitable for clustering trapezoidal fuzzy data. A linear ranking function is used to define a distance for trapezoidal fuzzy data. Then, as an application, a method based on the proposed algorithm is pres...
متن کاملOPTIMIZATION OF FUZZY CLUSTERING CRITERIA BY A HYBRID PSO AND FUZZY C-MEANS CLUSTERING ALGORITHM
This paper presents an efficient hybrid method, namely fuzzy particleswarm optimization (FPSO) and fuzzy c-means (FCM) algorithms, to solve the fuzzyclustering problem, especially for large sizes. When the problem becomes large, theFCM algorithm may result in uneven distribution of data, making it difficult to findan optimal solution in reasonable amount of time. The PSO algorithm does find ago...
متن کاملHigh Performance Implementation of Fuzzy C-Means and Watershed Algorithms for MRI Segmentation
Image segmentation is one of the most common steps in digital image processing. The area many image segmentation algorithms (e.g., thresholding, edge detection, and region growing) employed for classifying a digital image into different segments. In this connection, finding a suitable algorithm for medical image segmentation is a challenging task due to mainly the noise, low contrast, and steep...
متن کاملHigh Performance Implementation of Fuzzy C-Means and Watershed Algorithms for MRI Segmentation
Image segmentation is one of the most common steps in digital image processing. The area many image segmentation algorithms (e.g., thresholding, edge detection, and region growing) employed for classifying a digital image into different segments. In this connection, finding a suitable algorithm for medical image segmentation is a challenging task due to mainly the noise, low contrast, and steep...
متن کامل